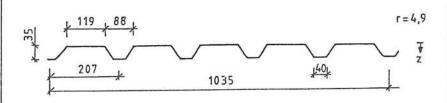
Aluminium- Trapezprofil

PP - TRP 35-207


Blatt 7

Querschnitts- und Schubfeldwerte nach DIN 18807, Teil 6

Profiltafel in

Positivlage

Maße in mm

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{p0,2} = 180 N/mm²

Blech-	Eigen-	Biegu	ung 1) Normalkraftbeanspruchung								Grenzstützweiten 3)		
dicke	last				cht reduzie Querschn		7 Tal. (1.7 Tal. 1.7		irksamer erschnitt ²⁾		Mehrfeld- träger		
t	g I _{ef} I _{ef}		l _{ef}	A _g	i _g	Zg	A _{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}		
mm	kN/m²	cm⁴/m	cm⁴/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m		
0,70 0,90	0,023 0,029	10,49 14,68	13,45 19,12	8,25 10,60	1,42 1,42	1,18 1,18	2,48 4,11	1,58 1,54	1,75 1,75				

Schubfeld	dwerte
-----------	--------

				(750 [kN/m])				
t mm	L _s ⁴⁾ m	T _{1,k} ⁴⁾ kN/m	k ₁ m/kN	k ₂ ' m²/kN	k ₁ ⁵⁾ kN ⁻¹	k ₂ ⁵⁾ m²/kN	K ₃ ⁶⁾	

¹⁾ Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).

⁵⁾ Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = \left[\left(k_1' + k_1^* \cdot e_L \right) + \left(k_2' + k_2^* \right) / L_S \right] \cdot 10^{-1} \cdot a \cdot vorhT$$

mit e_L = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluß in kN/m

⁶⁾ T· k_3 +A $\leq R_{A,k}/\gamma_M$, mit T= γ_F - facher Schubfluß

²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{p0,2}$

³⁾ Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.

⁴⁾ Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2$ x Tabellenwert.

Aluminium-Trapezprofil

PP - TRP 35-207

Blatt 8

Charakteristische Tragfähigkeitswerte nach DIN 18807, Teil 6

Profiltafel in

Positivlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächen- Belastung ¹⁾
Als Teilsicherheitsbeiwert ist v = 1.1 zu setzen

Blech-	Feld-	Endauf-		Elastisc	h aufnehml	oare Schnit	tgrößen an	Zwische	nstützen 5)	
dicke	moment	lager- kraft			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft
t	$M_{F,k}$	R _{A,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}
mm ·	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m
		²⁾ b _A = 40 mm	Zv		iflagerbreite 60 mm	e ³⁾	Zwischenauflagerbreite ⁴ , b _B ≥ 120 mm			
0,70 0,90	0,747 1,11	4,45 7,66	0,706 1,182	11,32 19,50	0,706 1,182	10,12 17,44	0,706 1,182	15,42 26,58	0,706 1,182	13,80 23,77

Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächen- Belastung ¹⁾ Als Teilsicherheitsbeiwert ist $\gamma_{v}=1,1$ zu setzen.

Blech- dicke	Feld- moment		indung in	jedem a	nliegender	Gurt	Verbindung in jedem 2. anliegenden Gurt						
		Endauf- lager		Zwische	nauflager ⁶	5)	Endauf- lager	Zwischenauflager 6)					
t	$M_{F,k}$	R _{A,k}	M _{B,k}	R _{B,k}	max M _{B,k}	max V _k	R _{A,k}	$M_{B,k}^0$	R _{B,k}	max M _{B,k}	$\max V_{k}$		
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m		
0,70 0,90	0,706 1,182	19,40 32,08			0,747 1,11	19,40 32,08	9,70 16,04			0,374 0,556	9,70 16,04		
					*	. *							

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment $M_{E,k}$, sondern mit dem Stützmoment max $M_{B,k}$ für die entgegengesetzte Lastrichtung zu führen
- b_A= Endauflagebreite. Bei einem Profilüberstand ü [mm] > s_w/t dürfen die R_{A,k}- Werte um 20% erhöht werden.
- Für kleinere Auflagerbreiten b_B als angegeben müssen die aufnehmbaren Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für b_B< 10 mm, z.B. bei Rohren, darf b_B = 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für M und R

$$\frac{M}{\max M_{B,k}^0/\gamma_M} + (\frac{R}{R_{B,k}^0/\gamma_M})^2 \le 1$$

6) Interaktionsbeziehung für M und V

$$\frac{M}{\max M_{B,k}/\gamma_M} + \frac{V}{V_k/\gamma_M} \le 1,3$$

	- "
Aluminium-	Trapezprofil
, arear in the country	11000000010111

PP - TRP 35-207

Blatt 9

Charakteristische Tragfähigkeitswerte für Verbindungen nach DIN 18807, Teil 6

Profiltafel in Positivlage

Aufnehmbare Zugkraft Z_k in kN pro Verbindungselement in in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. ^{1) 2)}

Als Teilsicherheitsbeiwert ist γ_{M} = 1,33 zu setzen.

7M	t	0,	70	0,	90		
Verbindung	d	16	19	16	19		/
		0,82	0,89	1,05	1,14		
							=

 $Z_{kI} = \alpha_{L} \cdot \alpha_{M} \cdot \alpha_{E} \cdot Z_{k}$

geprüft ______ Bess. Landesprüfstelle für Baustatik

 $[\]alpha_L$ = Beiwert zur Berücksichtigung der Biegzugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager und im Obergurt)

 $[\]alpha_{\rm M}$ = Beiwert zur Berücksichtigung des Werkstoffs der Dichtscheiben nach DIN 18807, Teil 6, Tabelle 3

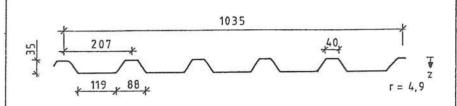
α = Beiwert zur Berücksichtigung der Anordnung der Verbindungen nach DIN 18807, Teil 6, Tabelle 4

Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

Aluminium- Trapezprofil

PP - TRP 35-207

Blatt 10


Querschnitts- und Schubfeldwerte nach DIN 18807, Teil 6

Profiltafel in

Negativlage

Maße in mm

Schubfeldwerte

Nennwert der Spannung an der 0,2%- Dehngrenze: R_{n0.2} = 180 N/mm²

Blech-	Eigen-	Jerschnitt:	ung 1)	Г	Nor	malkrafthe	anspruchu	na		Grenzstützweiten		
dicke	last	ыедс	ing	nicht reduzierter Querschnitt			wirksamer Querschnitt ²⁾			Einfeld- träger	Mehrfeld träger	
t	g	l ⁺ ef	l _{ef}	A _g	i _g	Zg	A _{ef}	i _{ef}	Z _{ef}	l _{gr}	l _{gr}	
mm	kN/m²	cm ⁴ /m	cm⁴/m	cm²/m	cm	cm	cm²/m	cm	cm	m	m	
0,70 0,90	0,023 0,029	13,45 19,12	10,49 14,68	8,25 10,60	1,42 1,42	2,32 2,32	2,48 4,11	1,58 1,54	1,75 1,75			

			(750 [kN/m])				
t mm	L _s ⁴⁾ m	T _{1,k} ⁴⁾ kN/m	k ₁ m/kN	k ₂ /LS/ m ² /kN	k ₁ 5)	k ₂ ⁵⁾ m²/kN	K ₃ ⁶⁾

¹⁾ Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).

⁵⁾ Falls erforderlich, darf die Gesamtverformung eines Schubfeldes wie folgt ermittelt werden:

$$f = \left[\left(k_1' + k_1^* \cdot e_L \right) + \left(k_2' + k_2^* \right) / L_S \right] \cdot 10^{-1} \cdot a \cdot vorhT$$

mit e_L = Abstand der Verbindungen im Längsstoß in m

a = Schubfeldbreite in m, senkrecht zur Profilierrichtung

T = vorhandener Schubfluß in kN/m

6) T- k_3 +A $\leq R_{A,k}/\gamma_M$, mit T= γ_F - facher Schubfluß

²⁾ Wirksamer Querschnitt für eine konstante Druckspannung σ = $R_{p0,2}$

³⁾ Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf

⁴⁾ Für Einzelstützweiten $L_{si} \le L_R$ darf $T_{1,k}$ aus der Tabelle entnommen oder mit $(L_R/L_{si})^2$ erhöht werden; für $L_{si} > L_R$ muß $T_{1,k}$ mit $(L_R/L_{si})^2$ abgemindert werden. Für Einfeldträger ist $T_{1,k} = 2$ x Tabellenwert.

Aluminium-Trapezprofil

PP - TRP 35-207

Blatt 11

Charakteristische Tragfähigkeitswerte nach DIN 18807, Teil 6

Profiltafel in

Negativlage

Tragfähigkeitswerte für nach unten gerichtete und andrückende Flächen- Belastung ¹⁾ Als Teilsicherheitsbeiwert ist γ_{ν} = 1,1 zu setzen.

Feld-	Endauf-		Elastisch aufnehmbare Schnittgrößen an Zwischenstützen 3									
moment	lager- kraft			max. Stütz- moment	max. Auflager- kraft			max. Stütz- moment	max. Auflager- kraft			
$M_{F,k}$	R _{A,k}	M _{B,k}	R _{B,k}	max M _{B,k}	max R _{B,k}	M _{B,k}	$R_{B,k}^0$	max M _{B,k}	max R _{B,k}			
kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m			
	²⁾ b _A = 40 mm	Zv		23334	³⁾	Zwischenauflagerbreite ⁴⁾ b _B ≥ 120 mm						
0,706 1,18	4,45 7,66	0,747 1,11	11,32 19,50	0,747 1,11	10,12 17,44	0,747 1,11	15,42 26,58	0,747 1,11	13,80 23,77			
	M _{F,k} kNm/m	moment lager-kraft M _{F,k} R _{A,k} kNm/m kN/m ²⁾ b _A = 40 mm mm 0,706 4,45	moment lager-kraft $M_{F,k}$ $R_{A,k}$ $M_{B,k}^0$ kNm/m kN/m kNm/m $^{2)}b_A = 40$ Zv mm 0,706 4,45 0,747	moment lager-kraft $M_{F,k}$ $R_{A,k}$ $M_{B,k}^0$ $R_{B,k}^0$ kNm/m kN/m kNm/m kN/m $^{2)}b_A = 40$ Zwischenau $b_B = 0$ 0,706 4,45 0,747 11,32		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Tragfähigkeitswerte für nach oben gerichtete und abhebende Flächen- Belastung ¹⁾ Als Teilsicherheitsbeiwert ist γ_ν= 1,1 zu setzen.

Feld- moment	Verb	indung in	jedem a	ınliegender	Gurt	Verbindung in jedem 2. anliegenden Gurt					
Endauf- Zwischenauflager ⁶⁾ lager						Endauf- lager	Zwischenauflager 6)				
$M_{F,k}$	R _{A,k}	M _{B,k}	R _{B,k}	max M _{B,k}	max V _k	R _{A,k}	M _{B,k}	R _{B,k}	max M _{B,k}	max V _k	
kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	
0,747 1,11	19,40 32,08			0,706 1,182	19,40 32,08	9,70 16,04			0,353 0,591	9,70 16,04	
	M _{F,k} kNm/m 0,747	moment Endauf- lager M _{F,k} R _{A,k} kNm/m kN/m 0,747 19,40	moment Endauflager M _{F,k} R _{A,k} M ⁰ _{B,k} kNm/m kN/m kNm/m 0,747 19,40	moment Zwische Endauf- lager Zwische M _{F,k} R _{A,k} M ⁰ _{B,k} R ⁰ _{B,k} kNm/m kN/m kNm/m kN/m 0,747 19,40	moment Zwischenauflager Endauflager Zwischenauflager M _{F,k} R _{A,k} M _{B,k} R _{B,k} max M _{B,k} kNm/m kN/m kNm/m kNm/m 0,747 19,40 0,706	moment Zwischenauflager ⁶⁾ M _{F,k} R _{A,k} M ⁰ _{B,k} R ⁰ _{B,k} max M _{B,k} max V _k kNm/m kN/m kNm/m kNm/m kNm/m kNm/m kN/m 0,747 19,40 0,706 19,40	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		moment Zwischenauflager ⁶⁾ Endauflager Zwischen zwisc	moment Endauflager Zwischenauflager Endauflager Zwischenauflager Zwischenauflager M _{F,k} R _{A,k} M ⁰ _{B,k} R ⁰ _{B,k} max M _{B,k} max V _k R _{A,k} M ⁰ _{B,k} R ⁰ _{B,k} max M _{B,k} kNm/m kN/m kNm/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m nax M _{B,k} kN/m kN/m	

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M_{F,k}, sondern mit dem Stützmoment max M_{B,k} für die entgegengesetzte Lastrichtung zu führen
- ²⁾ b_A= Endauflagebreite. Bei einem Profilüberstand ü [mm] > s_w/t dürfen die R_{A,k}- Werte um 20% erhöht werden.
- Für kleinere Auflagerbreiten b_B als angegeben müssen die aufnehmbaren Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für b_B< 10 mm, z.B. bei Rohren, darf b_B = 10 mm eingesetzt werden.
- ⁴⁾ Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 5) Interaktionsbeziehung für M und R

$$\frac{M}{\max M_{B,k}^0/\gamma_M} + \left(\frac{R}{R_{B,k}^0/\gamma_M}\right)^2 \le 1$$

6) Interaktionsbeziehung für M und V

$$\frac{M}{\max M_{B,k}/\gamma_M} + \frac{V}{V_k/\gamma_M} \le 1,3$$

Aluminium-Trapezprofil

PP - TRP 35-207

Blatt 12

Charakteristische Tragfähigkeitswerte für Verbindungen nach DIN 18807, Teil 6

Profiltafel in Negativlage

Aufnehmbare Zugkraft Z_k in kN pro Verbindungselement in in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. ^{1) 2)}

Als Teilsicherheitsbeiwert ist $\gamma_{\rm M}$ = 1,33 zu setzen.

** **	t	0,	70	0,	90		_/
Verbindung	d	16	19	16	19		
		0,82	0,89	1,05	1,14		
		0,82	0,89	1,05	1,14		
		0,82	0,89	1,05	1,14		

¹⁾ $Z_{kI} = \alpha_{L} \cdot \alpha_{M} \cdot \alpha_{E} \cdot Z_{k}$

 $[\]alpha_L$ = Beiwert zur Berücksichtigung der Biegzugspannung im angeschlossenen Gurt nach DIN 18807, Teil 6, Tabelle 2 (α_L = 1,0 bei Befestigung am Endauflager und im Obergurt)

 $[\]alpha_{\rm M}$ = Beiwert zur Berücksichtigung des Werkstoffs der Dichtscheiben nach DIN 18807, Teil 6, Tabelle 3

 $[\]alpha_{\rm E}^{\rm M}$ = Beiwert zur Berücksichtigung der Anordnung der Verbindungen nach DIN 18807, Teil 6, Tabelle 4

Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.